Muavr düsturu — kompleks ədədlər üçün ifadə olunan düsturu, iddia edir ki, ixtiyari üçün olduqda Muavr düsturu aşağıdakı kimi olur:
- .
İsbatı
Muavr düsturunu Eyler düsturu ilə ifadə edib və qüvvət əməllərini yerini yetirib isbat etmək olar. Burada b — tam ədəddir.
Tətbiqi
Analoji düstur həmçinin kompleks ədədlərin sıfırdan fərqli n-ci köklərinin tapılmasında istifadə olunur:
- Analiz etmək alınmadı (SVG (MathML brauzer əlavəsi vasitəsilə aktivləşdirilə bilər): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/az.wikipedia.org/v1/":): {\displaystyle z^{1/n}=[r(\cos (\varphi+2\pi k) +i\sin (\varphi+2\pi k))]^{1/n} = r^{1/n}\left(\cos \frac{\varphi+2\pi k}{n} +i\sin \frac{\varphi+2\pi k}{n}\right),}
k = 0, 1, …, n—1 olduqda.
Tarix
Bu düstur ilk dəfə XVIII əsrdə yaşamış fransız riyaziyyatçısı Abraham de Muavr tərəfindən kəşf edilmişdir və onun şərəfinə adlandırılmışdır.
İstinadlar
- Əgər b — natamam ədəddirsə, — çoxdəyişənli a və funksiyalarının yalnız birinin qiymətini alacaq
wikipedia, oxu, kitab, kitabxana, axtar, tap, meqaleler, kitablar, oyrenmek, wiki, bilgi, tarix, tarixi, endir, indir, yukle, izlə, izle, mobil, telefon ucun, azeri, azəri, azerbaycanca, azərbaycanca, sayt, yüklə, pulsuz, pulsuz yüklə, haqqında, haqqinda, məlumat, melumat, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, şəkil, muisiqi, mahnı, kino, film, kitab, oyun, oyunlar, android, ios, apple, samsung, iphone, pc, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, web, computer, komputer
Muavr dusturu kompleks ededler ucun ifade olunan z r cos f isin f displaystyle z r cos varphi i sin varphi dusturu iddia edir ki ixtiyari n Z displaystyle n in mathbb Z ucun olduqda Muavr dusturu asagidaki kimi olur zn rn cos nf isin nf displaystyle z n r n cos n varphi i sin n varphi IsbatiMuavr dusturunu Eyler dusturu ile eif cos f isin f displaystyle e i varphi cos varphi i sin varphi ifade edib ve quvvet emellerini ea b eab displaystyle e a b e ab yerini yetirib isbat etmek olar Burada b tam ededdir TetbiqiAnaloji dustur hemcinin kompleks ededlerin sifirdan ferqli n ci koklerinin tapilmasinda istifade olunur Analiz etmek alinmadi SVG MathML brauzer elavesi vasitesile aktivlesdirile biler Invalid response Math extension cannot connect to Restbase from server http localhost 6011 az wikipedia org v1 displaystyle z 1 n r cos varphi 2 pi k i sin varphi 2 pi k 1 n r 1 n left cos frac varphi 2 pi k n i sin frac varphi 2 pi k n right k 0 1 n 1 olduqda TarixBu dustur ilk defe XVIII esrde yasamis fransiz riyaziyyatcisi Abraham de Muavr terefinden kesf edilmisdir ve onun serefine adlandirilmisdir IstinadlarEger b natamam ededdirse ea b displaystyle e a b coxdeyisenli a ve eab displaystyle e ab funksiyalarinin yalniz birinin qiymetini alacaq