Hiperbola (yun. ύπερβολή — yuxarıdan, ύπερ — atmaq) — tərs mütənasibliyin qrafikinə verilən addır.
Tərs mütənasiblik düsturu
y = k ÷ x
Asimptotlar
Hiperbolanın asimptotları:
Hiperbola 2 asimptotdan ibarətdir:
Xarakteristikası
Hiperbola Parabolanın tərsidir. Hiperbola iki budaqdan ibarətdir. k > 0 olduqda hiperbolanın budaqları I və III rüblərdə, k < 0 olduqda isə hiperbolanın budaqları II və IV rüblərdə yerləşir. Hiperbolanın xarakteristikasına aşğıdakı ifadələr aiddir:
- .
- .
- .
- .
- .
- .
- .
- .
Həmçinin bax
Xarici keçidlər
- Hiperbola
- Construire la géométrie analytique objets 2017-09-15 at the Wayback Machine
- Coniques et théorème de Dandelin
wikipedia, oxu, kitab, kitabxana, axtar, tap, meqaleler, kitablar, oyrenmek, wiki, bilgi, tarix, tarixi, endir, indir, yukle, izlə, izle, mobil, telefon ucun, azeri, azəri, azerbaycanca, azərbaycanca, sayt, yüklə, pulsuz, pulsuz yüklə, haqqında, haqqinda, məlumat, melumat, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, şəkil, muisiqi, mahnı, kino, film, kitab, oyun, oyunlar, android, ios, apple, samsung, iphone, pc, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, web, computer, komputer
Hiperbola yun yperbolh yuxaridan yper atmaq ters mutenasibliyin qrafikine verilen addir Hiperbola eyrisi Ters mutenasiblik dusturuy k xAsimptotlarHiperbolanin asimptotlari x2a2 y2b2 1 displaystyle frac x 2 a 2 frac y 2 b 2 1 Hiperbola 2 asimptotdan ibaretdir xa yb 0 displaystyle frac x a pm frac y b 0 XarakteristikasiHiperbola Parabolanin tersidir Hiperbola iki budaqdan ibaretdir k gt 0 olduqda hiperbolanin budaqlari I ve III rublerde k lt 0 olduqda ise hiperbolanin budaqlari II ve IV rublerde yerlesir Hiperbolanin xarakteristikasina asgidaki ifadeler aiddir c2 a2 b2 displaystyle c 2 a 2 b 2 e c a displaystyle varepsilon c a b2 a2 e2 1 displaystyle b 2 a 2 left varepsilon 2 1 right rp a e 1 displaystyle r p a left varepsilon 1 right a pe2 1 displaystyle a frac p varepsilon 2 1 b pe2 1 displaystyle b frac p sqrt varepsilon 2 1 c pee2 1 displaystyle c frac p varepsilon varepsilon 2 1 p b2a displaystyle p frac b 2 a Hemcinin baxParabola Hiperbolik funksiyalarXarici kecidlerVikianbarda Hiperbola ile elaqeli mediafayllar var Hiperbola Construire la geometrie analytique objets 2017 09 15 at the Wayback Machine Coniques et theoreme de Dandelin